Math Task сайт репетиторов

Функция

 
  line    
line
 
         
  Главная > Учебные материалы > Математика:  Функция  
  line  
 
  • Репетитор по математике - Васильев Алексей Александрович Math Task Репетитор: Васильев Алексей Александрович

    Math Task Предметы: математика, физика, информатика, экономика.

           Стоимость: 2000 руб / 90 мин.
  • Репетитор по математике - Крюков Илья Хассанович Math Task Репетитор: Крюков Илья Хассанович

    Math Task Предметы: математика, экономика, бухгалтерский учет.

           Стоимость: 1600 руб / 60 мин.
  • Репетитор по математике - Скрипаленко Михаил Михайлович Math Task Репетитор: Скрипаленко Михаил Михайлович

    Math Task Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по русскому языку - Матвеева Милада Андреевна Math Task Репетитор: Матвеева Милада Андреевна

    Math Task Предметы: русский язык, литература (ЕГЭ, ГИА).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по физике - Тверской Василий Борисович Math Task Репетитор: Тверской Василий Борисович

    Math Task Предметы: математика, физика.

           Стоимость: 3500 руб / 90 мин.
  • Репетитор по английскому языку - Поздняков Андрей Александрович Math Task Репетитор: Поздняков Андрей Александрович

    Math Task Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

           Стоимость: 2000 руб / 60 мин.
  • Репетитор по бухучету - Ершикова Марина Львовна Math Task Репетитор: Ершикова Марина Львовна

    Math Task Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

           Стоимость: 1500 руб / 60 мин.
 
 
1.Понятие функции.
2.Свойства функций.
3.Основные элементарные функции.

 

 
     
  1 2 3 4 5 6 7 8 9  
     
  line  
 

1. Понятие функции

   Понятие "функция" является одним из основных понятий в математике. Под функцией понимают некий закон, по которому одна переменная величина зависит от другой. Согласно определению, если каждому значению переменной х множества Х ставится в соответствие одно определенное значение переменной у множества Y, то такое соответствие называется функцией. Исходя из этого, можно дать другую формулировку: однозначное соответствие двух переменных величин на множестве действительных чисел R называется функцией.
   Переменая х называется независимой переменной или аргументом, y - зависимой переменной от x, буква f обозначает закон соответствия. Множество X называется областью определения функции, а множество Y, соответственно, областью значений функции.

 

 
  line  
 

2. Cвойства функций

   1.Четность и нечетность. Функция f(x) называется четной, если ее значения симметричны относительно оси OY, т.е. f(-x) = f(x). Функция f(x) называется нечетной, если  ее значение изменяется на противоположное при изменении переменной х на -х , т.е. f(-x) = -f(x). В противном случае функция называется функцией общего вида.

   2.Монотонность. Функция называется возрастающей (убывающей) на промежутке Х, если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции, т.е. при x1< (>) x2, f(x1) < (>) f(x2).

   3.Периодичность. Если значение функции f(x) повторяется через определенный период Т, то функция называется периодической с периодом  Т ≠ 0 , т.е. f(x + T) = f(x). В противном случае непериодической.

   4. Ограниченность. Функция f (x) называется ограниченной на промежутке Х, если существует такое положительное число М > 0 , что для любого x, принадлежащего промежутку Х, | f (x) | < M. В противном случае функция называется неограниченной.

 

 
  line  
 

3. Основные элементарные функции



Степенная функция

   у = х 

область определения (-∞,∞)
область значений (-∞,∞)
нечетная
возрастает на (-∞,∞)
непериодическая
 
График функции y=kx+b

 

 
    у = х² 

область определения (-∞,∞)
область значений (0,∞)
четная
возрастает на (0,∞)
убывает на (-∞,0)
непериодическая
  График функции у=х²

 

 
   у = х³  

область определения (-∞,∞)
область значений (-∞,∞)
нечетная
возрастает на (-∞,∞)
непериодическая
  График функции у=х³

 

 
 
  у = 1/х

область определения (-∞,0)U(0,∞)
область значений (-∞,0)U(0,∞)
нечетная
убывает на (-∞;0) и на ( 0;∞)
непериодическая
  График функции у=1/х

 

 
  у = 1/х²  

область определения (-∞,0)U(0,∞)
область значений (0,∞)
четная
возрастает на (-∞,0) и убывает на (0,∞)
непериодическая
  График функции у=1/х²

 

 
 
 

область определения [0,∞)
область значений [0,∞)
общего вида,
возрастает на [0; ∞)
непериодическая

  График функции y=√x

 

 
 

область определения (-∞,∞)
область значений (-∞,∞)
нечетная
возрастает на (-∞,∞)
непериодическая

  График функции y=³√x

 

 
 
 

Показательная функция

   у = а ͯ      (a>0  a≠1)

область определения (-∞,∞)
область значений (0; ∞) 
общего вида
возрастает на (-∞,∞), если a>1;
убывает на (-∞,∞), если 0<a<1
непериодическая

  График показательной функции y=аˣ

 

 
 

Логарифмическая функция

   у = log ₐ x    (a>0  a≠1)

область определения (0,∞)
область значений (-∞; ∞) 
общего вида
возрастает на (0,∞), если a>1;
убывает на (0,∞), 0<a<1
непериодическая

  График функции y=logₐx

 

 
 
 

Тригонометрические функции

   y = sin x

область определения (-∞; ∞) 
область значений [-1; 1] 
нечетная
возрастает на [-π/2 + 2πn, π/2 + 2πn];
убывает на [π/2 + 2πn, 3π/2 + 2πn], nϵZ;
период  Т=2π

  График функции y=sin x

 

 
 

  y = cos x

область определения (-∞; ∞) 
область значений [-1; 1] 
четная
возрастает на [-π + 2πn, 2πn];
убывает на [2πn, π + 2πn], nϵZ;
период  Т=2π

  График функции y=cos x

 

 
 

   y = tg x

область определения
(-π/2 + πn, π/2 + πn) nϵZ;
область значений (-∞; ∞) 
нечетная
возрастает на (-π/2 + πn, π/2 + πn) nϵZ;
период  Т=π

  График функции y=tg x

 

 
 

   y = ctg x

область определения
(πn, π + πn) nϵZ;
область значений (-∞; ∞) 
нечетная
убывает на (πn, π + πn) nϵZ;
период  Т=π

  График функции y=ctg x

 

 
 
 

  y = arcsin x

область определения [-1; 1]
область значений [-π/2; π/2] 
нечетная
возрастает на [-1; 1]

  График функции y=arcsin x

 

 
 

   y = arccos x

область определения [-1; 1]
область значений [0; π] 
функция центрально-симметрична относительно точки (0; π/2)
убывает на [-1; 1]

  График функции y=arccos x

 

 
 

   y = arctg x

область определения (-∞; ∞)
область значений [-π/2; π/2] 
нечетная
возрастает на (-∞; ∞)

  График функции y=arctg x

 

 
 

   y = arcctg x

область определения (-∞; ∞)
область значений [0; π] 
ни четная, ни нечетная
убывает на (-∞; ∞)

  График функции y=arcctg x  
 
     
 
 

Пример 1.

Найти область определения функции.

Область определения функции

 
 

Пример 2

Выяснить четность или нечетность функции.

Четность и нечетность функции

 

График функции y=x³+2sin x

График функции y=x³+2sin x

 
 

Пример 3

     
  Четность и нечетность функции   График функции w(x)=5sinx/0.2x  
  Функция нескольких переменных   График функции у = х² + y²  
         
         
  line  
     
  1 2 3 4 5 6 7 8 9  
     
line
    Комментарий:  
         
  Регистрация  
   Для написания комментария необходимо зарегистрироваться!    
         
        Забыли пароль?
      Email:
      Пароль:
       
         
         
         
line
 
line line
Math Task - сайт репетиторов Яндекс.Метрика Рейтинг@Mail.ru