Планиметрия. Страница 4
Math Task сайт репетиторов

Планиметрия. Страница 4

 
  line    
line
 
         
  Главная > Учебные материалы > Математика:  Планиметрия. Страница 4  
  line  
 
  • Репетитор по математике - Васильев Алексей Александрович Math Task Репетитор: Васильев Алексей Александрович

    Math Task Предметы: математика, физика, информатика, экономика.

           Стоимость: 2000 руб / 90 мин.
  • Репетитор по математике - Крюков Илья Хассанович Math Task Репетитор: Крюков Илья Хассанович

    Math Task Предметы: математика, экономика, бухгалтерский учет.

           Стоимость: 1600 руб / 60 мин.
  • Репетитор по математике - Скрипаленко Михаил Михайлович Math Task Репетитор: Скрипаленко Михаил Михайлович

    Math Task Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по русскому языку - Матвеева Милада Андреевна Math Task Репетитор: Матвеева Милада Андреевна

    Math Task Предметы: русский язык, литература (ЕГЭ, ГИА).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по физике - Тверской Василий Борисович Math Task Репетитор: Тверской Василий Борисович

    Math Task Предметы: математика, физика.

           Стоимость: 3500 руб / 90 мин.
  • Репетитор по английскому языку - Поздняков Андрей Александрович Math Task Репетитор: Поздняков Андрей Александрович

    Math Task Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

           Стоимость: 2000 руб / 60 мин.
  • Репетитор по бухучету - Ершикова Марина Львовна Math Task Репетитор: Ершикова Марина Львовна

    Math Task Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

           Стоимость: 1500 руб / 60 мин.
 
 

1.Параллелограмм.
2.Свойство диагоналей параллелограмма.
3.Ромб.
4.Теорема Фалеса.
5.Средняя линия треугольника.
6.Трапеция.
7.Теорема о пропорциональных отрезках.

 

 
1 2 3 4 5 6 7 8 9 10 11 12
 
line

1.Параллелограмм

 
         
 

   Параллелограмм - это геометрическая фигура, у которой диагонали пересекаются в точке, делящей их пополам, а противолежащие стороны параллельны.

   Теорема: если диагонали четырехугольника пересекаются и делятся этой точкой пересечения пополам, то такой четырехугольник называется параллелограммом.

   Доказательство. Пусть АВСD данный четырехугольник. Точка О - точка пересечения его диагоналей (рис.1). Тогда треугольники Δ АОD и Δ ВOC равны по двум сторонам и углу между ними. А следовательно, угол ODA равен углу CBO и угол OAD равен углу BCO. Таким образом, эти углы являются внутренними накрест лежащими для прямых AD и BC и секущей AC. А по признаку параллельности прямых, прямые AD и BC параллельны. Аналогично можно доказать, что прямая АВ параллельна ВС. Теорема доказана.

 

Теорема. Параллелограмм

Рис.1 Теорема. Параллелограмм.

 
       
2.Свойство диагоналей параллелограмма    
       
 

    Теорема. если четырехугольник является параллелограммом, то его диагонали делятся точкой пересечения пополам.

    Доказательство. Пусть дан параллелограмм АВСD. (Рис. 2)

   Тогда его стороны AD и BC равны и лежат на параллельных прямых а и b. Если мы проведем секущие с и d так, чтобы прямая с проходила через точку А и С, а прямая d проходила через точку B и D, то угол ОАD будет равен углу ОСВ, а угол ОDА будет равен углу ОВС, как внутренние накрест лежащие. Следовательно, треугольники АОD и ВОС равны по стороне и прилегающим к ней углам. А отсюда следует и равенство сторон этих треугольников. Т.е. АО = ОС, а ВО = ОD. Сумма этих сторон и есть диагонали параллелограмма.

  Свойство диагоналей параллелограмма

Рис.2 Теорема. Свойство диагоналей параллелограмма.

 
         
         

3.Ромб

 

   Ромб - это геометрическая фигура, у которой все стороны равны.

    Теорема. диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

    Доказательство. Пусть АВСD - ромб.(Рис. 3). Тогда треугольник АВС - равнобедренный. А это значит, что отрезок ВО, который является половиной диагонали, является биссектрисой медианой и высотой. Следовательно диагонали ромба АС и ВD пересекаются под прямым углом.

  Свойство диагоналей ромба

Рис.3 Теорема. Свойство диагоналей ромба.

 
         
         
 

Задача

 

   В параллелограмме АВСD проведена биссектриса угла А, которая пересекает сторону ВС в точке Е. Необходимо найти отрезки ВЕ и ЕС, если АВ = 9 см, АD = 14 см (рис.4)

    Решение. Так как прямая АЕ биссектриса, то это значит, что треугольники АВЕ и АЕР равны. Так как угол ВАЕ равен углу АЕР, а угол ЕАР равен углу ВЕА как внутренние накрест лежащие. Следовательно АВЕР - ромб, так как угол ВАЕ равен углу ЕАР ( по условию). Отсюда следует, что АВ = ВЕ = 9 см, а ЕС = 5 см.

  Задача. Геометрическое место точек

Рис.4 Задача.

 
         
         
         

4.Теорема Фалеса

 
 

   Теорема: параллельные прямые, пересекающие стороны угла и отсекающие на одной его стороне равные отрезки, отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть дан угол и пересекающие его параллельные прямые (рис.5). Точки А1А2А3А4 и В1В2В3В4 - точки пересечения. Проведем прямую ОЕ. Тогда А1ЕОА3 - параллелограмм. И ОЕ = А1А3 Треугольники В1В2Е и ОВ2В3 равны по стороне (ОВ2 = ЕВ2) и прилегающим к ней углам. Из равенства треугольников следует, что В1В2 = В2В3.

  Теорема Фалеса

Рис.5 Теорема Фалеса.

 
         

5.Средняя линия треугольника

 

    Теорема. средняя линия треугольника, которая соединяет середины двух данных сторон, параллельна третьей его стороне и равна ее половине.

    Доказательство. Пусть АВС - треугольник. Отрезок ЕР соединяет середины сторон АВ и ВС (Рис. 5). Тогда по теореме Фалеса отрезок ЕР параллелен основанию АС, так как он делит стороны АВ и ВС на равные части.
    Если на стороне АС отметить точку К, которая делит ее пополам и провести отрезок РК, то он будет параллелен стороне АВ. А геометрическая фигура АЕРК будет являться параллелограммом. Отсюда следует, что средняя линия ЕР равна половине основания.
   Таким образом, утверждение, что средняя линия треугольника параллельна основанию и равна его половине, верно.

  Средняя линия треугольника

Рис.5 Теорема. Средняя линия треугольника.

 
         

6.Трапеция

 

   Трапеция - это геометрическая фигура, у которой только две противолежащие стороны параллельны.

    Теорема. средняя линия трапеции параллельна двум своим основаниям и равна их полусумме.

    Доказательство. Пусть АВСD - трапеция.(Рис. 6). Проведем прямую от вершины В через середину стороны СD точку Н к основанию, т.е. достроим треугольник АВО. Тогда треугольники ВСН и DHO равны по сторонам СН и НD и прилегающим к ним углам. Следовательно отрезок АО равен сумме оснований АD и ВС. Рассмотрим треугольник АВО. ЕН это средняя линия треугольника, которая равна половине основания АО, т.е. полусумме оснований трапеции АD и ВС.

  Средняя линия трапеции

Рис.6 Теорема. Средняя линия трапеции.

 
         
         

7.Теорема о пропорциональных отрезках

 

    Теорема. параллельные прямые, которые пересекают стороны угла, отсекают от его сторон пропорциональные отрезки.

    Доказательство. Пусть дан угол и пересекающие его параллельные прямые.
Необходимо доказать, что AС1/AС = AВ1/AВ (Рис. 7).

    Разобьем угол ВAС параллельными прямыми на n частей. Тогда АВ = ns, a AB1 = ms. Где s - отрезок некоторой длины. По теореме Фалеса эти прямые разбивают сторону AС также на равные части. Тогда:

Теорема о пропорциональных отрезках
  Теорема о пропорциональных отрезках

Рис.7 Теорема о пропорциональных отрезках.

 
 

   Допустим, что

Теорема о пропорциональных отрезках

   Отложим на луче АС отрезок АС2 < AC1, который равен АС2 = АС*АВ1/АВ (Рис.8). Если отрезок АС разбить на большое число частей, то между точками С1 и С2 будут деления. Одно из них обозначим как x и y.

Теорема о пропорциональных отрезках

    Т.е. мы пришли к противоречию, так как изначально мы взяли отрезок АС2 = АС*АВ1/АВ.

  Теорема о пропорциональных отрезках

Рис.8 Теорема о пропорциональных отрезках.

 
         
         
line
         
1 2 3 4 5 6 7 8 9 10 11 12
         
 

Содержание

     
         
  Страница 1   Страница 7  
  1.Основные фигуры планиметрии.
2.Аксиомы планиметрии.
3.Смежные углы.
4.Вертикальные углы.
5.Перпендикулярные прямые.
6.Признаки равенства треугольников.
  1.Движение и его свойства.
2.Симметрия относительно точки.
3.Симметрия относительно прямой.
4.Параллельный перенос и его свойства.
 
         
  Страница 2   Страница 8  
  1.Параллельность прямых.
2.Признаки параллельности прямых.
3.Свойство углов при пересечении параллельных прямых.
4.Сумма углов треугольника.
5.Единственность перпендикуляра к прямой.
  1.Вектор и его абсолютная величина.
2.Сложение векторов.
3.Умножение вектора на число.
4.Разложение вектора по двум неколлинеарным векторам.
5.Скалярное произведение векторов.
 
         
  Страница 3   Страница 9  
  1.Окружность описанная около треугольника.
2.Окружность вписанная в треугольник.
3.Геометрическое место точек.
  1.Преобразование подобия и его свойства.
2.Подобие фигур. Подобие треугольников по двум углам.
3.Подобие треугольников по двум пропорциональным сторонам и углу между ними.
4.Подобие треугольников по трем пропорциональным сторонам.
5.Подобие прямоугольных треугольников.
 
         
  Страница 4   Страница 10  
  1.Параллелограмм.
2.Свойства диагоналей параллелограмма.
3.Ромб.
4.Теорема Фалеса.
5.Средняя линия треугольника.
6.Трапеция.
7.Теорема о пропорциональных отрезках.
  1.Углы, вписанные в окружность.
2.Пропорциональность хорд и секущих окружности.
3.Теорема косинусов.
4.Теорема синусов.
5.Соотношение между углами и сторонами в треугольнике.
 
         
  Страница 5   Страница 11  
  1.Теорема Пифагора.
2.Египетский треугольник.
3.Соотношение между углами и сторонами в прямоугольном треугольнике.
4.Основные тригонометрические тождества.
  1.Многоугольники. Правильные многоугольники.
2.Радиус вписанной и описанной окружностей правильных многоугольников.
3.Подобие многоугольников.
4.Длина окружности.
 
         
  Страница 6   Страница 12  
  1.Декартова система координат.
2.Расстояние между точками.
3.Уравнение окружности.
4.Уравнение прямой.
5.Координаты точки пересечения.
  1.Площадь прямоугольника.
2.Площадь параллелограмма.
3.Площадь треугольника.
4.Площадь круга.
5.Площадь подобных фигур.
6.Площадь трапеции.
 
         
         
line
         
  Найти репетитора  
         
         
line
    Комментарий:  
         
  Регистрация  
   Для написания комментария необходимо зарегистрироваться!    
         
        Забыли пароль?
      Email:
      Пароль:
       
         
         
         
line
 
line line
Math Task - сайт репетиторов Яндекс.Метрика Рейтинг@Mail.ru