Планиметрия. Страница 9
Math Task сайт репетиторов

Планиметрия. Страница 9

 
  line    
line
 
         
  Главная > Учебные материалы > Математика:  Планиметрия. Страница 9  
  line  
 
  • Репетитор по математике - Васильев Алексей Александрович Math Task Репетитор: Васильев Алексей Александрович

    Math Task Предметы: математика, физика, информатика, экономика.

           Стоимость: 2000 руб / 90 мин.
  • Репетитор по математике - Крюков Илья Хассанович Math Task Репетитор: Крюков Илья Хассанович

    Math Task Предметы: математика, экономика, бухгалтерский учет.

           Стоимость: 1600 руб / 60 мин.
  • Репетитор по математике - Скрипаленко Михаил Михайлович Math Task Репетитор: Скрипаленко Михаил Михайлович

    Math Task Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по русскому языку - Матвеева Милада Андреевна Math Task Репетитор: Матвеева Милада Андреевна

    Math Task Предметы: русский язык, литература (ЕГЭ, ГИА).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по физике - Тверской Василий Борисович Math Task Репетитор: Тверской Василий Борисович

    Math Task Предметы: математика, физика.

           Стоимость: 3500 руб / 90 мин.
  • Репетитор по английскому языку - Поздняков Андрей Александрович Math Task Репетитор: Поздняков Андрей Александрович

    Math Task Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

           Стоимость: 2000 руб / 60 мин.
  • Репетитор по бухучету - Ершикова Марина Львовна Math Task Репетитор: Ершикова Марина Львовна

    Math Task Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

           Стоимость: 1500 руб / 60 мин.
 
 

1.Преобразование подобия и его свойства.
2.Подобие фигур. Подобие треугольников по двум углам.
3.Подобие треугольников по двум пропорциональным сторонам и углу между ними.
4.Подобие треугольников по трем пропорциональным сторонам.
5.Подобие прямоугольных треугольников.

 

 
1 2 3 4 5 6 7 8 9 10 11 12
 
line

1.Преобразование подобия и его свойства

 
 

   Преобразование подобия называется преобразование фигуры G в фигуру G', у которой расстояние между точками изменяется в одно и тоже число раз. Т.е. ОA' = k OA. Это означает, что для любых двух точек геометрической фигуры выполняется равенство A'B' = k AB. (Рис.1) Число k называется коэффициентом подобия.

   Если взять произвольную точку, например точку О. И отложить отрезок OB' = k OB, то такое преобразование фигуры G в фигуру G' называется гомотетией. А число k называется коэффициентом гомотетии. Таким образом, гомотетия есть преобразование подобия.

Свойства преобразования подобия

   Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки и при этом углы между прямыми сохраняются.

  Преобразование подобия и его свойства

Рис.1 Преобразование подобия и его свойства.

 
         
         

2.Подобие фигур. Подобие треугольников по двум углам

 
         
 

   Две фигуры называются подобными, если преобразованием подобия они переходят друг в друга. (Рис.2)

Сумма векторов

   Если две фигуры подобны третьей, то они подобны друг другу.

   Из свойств преобразования подобия следует, что у подобных фигур, соответсвующие стороны пропорциональны и соответствующие углы равны.

Подобие фигур
 

Подобие фигур

Рис.2 Подобие фигур.

 
 

Подобие треугольников по двум углам

   Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. (Рис.3)

   Докажем это утверждение. Пусть даны два треугольника ABC и A'B'C'.

Подобие фигур

   Преобразованием подобия преобразуем треугольник A'B'C' в треугольник A"B"C" с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A"B"C" равен треугольнику ABC по стороне и прилегающим к ней углам. Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A'B'C' и A"B"C" подобны. А т.к. треугольники ABC и A"B"C" равны, то треугольник ABC подобен треугольнику A'B'C'.

 

Подобие треугольников по двум углам

Рис.3 Подобие треугольников по двум углам.

 
       
       

3.Подобие треугольников по двум сторонам и углу между ними

   
       
 

   Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.

   Докажем это утверждение. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A'B'C'.

Подобие треугольников по двум пропорциональным сторонам и углу между ними

   Преобразованием подобия преобразуем треугольник A'B'C' в треугольник A"B"C" с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A"B"C" равен треугольнику ABC по двум сторонам и углу между ними со сторонами kA'B'=A"B" и kA'C'=A"C". Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A'B'C' и A"B"C" подобны. А т.к. треугольники ABC и A"B"C" равны, то треугольник ABC подобен треугольнику A'B'C', т.е. kA'B'=AB, kB'C'=BC и kA'C'=AC.

  Подобие треугольников по двум пропорциональным сторонам и углу между ними

Рис.3 Подобие треугольников.

 
         

4.Подобие треугольников по трем сторонам

   
       
 

   Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

   Доказательство. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A'B'C'.

Подобие треугольников по трем сторонам

   Преобразованием подобия преобразуем треугольник A'B'C' в треугольник A"B"C" с коэффициентом k, т.е. подвергнем гомотетии. В результате получим треугольник A"B"C", который равен треугольнику ABC по трем сторонам kA'B'=A"B", kВ'C'=В"C" и kA'C'=A"C". Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A'B'C' и A"B"C" подобны. И т.к. треугольники ABC и A"B"C" равны, то треугольник ABC подобен треугольнику A'B'C'.

  Подобие треугольников по трем пропорциональным сторонам

Рис.4 Подобие треугольников по трем сторонам.

 
         
   

5.Подобие прямоугольных треугольников

 

    Если два прямоугольных треугольника имеют по одному равному острому углу, то такие треугольники подобны.

    Пусть дан прямоугольный треугольник ABC. Проведем высоту CD. Треугольники ABC и ADC подобны, т.к. угол А у них общий. Так же как и треугольники ADC и BDC. Следовательно:

Подобие прямоугольных треугольников

   Т.е. катет прямоугольного треугольника равен средней геометрической гипотенузы и проекции этого катета на гипотенузу. А высота в прямоугольном треугольнике равна средней геометрической между проекциями катетов на гипотенузу.

   Отсюда можно сделать вывод, что в любом треугольнике биссектриса делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (Свойство биссектрисы треугольника).

  Подобие прямоугольных треугольников

Рис.5 Подобие прямоугольных треугольников.

 
 

   Докажем это утверждение. Пусть дан треугольник ABC. (Рис.6) BE - биссектриса. Треугольники ABE и BCD подобны. Углы В у них равны. Треугольники ADE и DCF также подобны. Углы D у них равны, как вертикальные. Отсюда можно записать следующие соотношения для двух пар треугольников.

Подобие прямоугольных треугольников

   Т.е. отрезки AD и DC пропорциональны сторонам AB и BC.

  Подобие прямоугольных треугольников

Рис.6 Подобие прямоугольных треугольников.

 
         
         
         
         
line
         
1 2 3 4 5 6 7 8 9 10 11 12
         
 

Содержание

     
         
  Страница 1   Страница 5  
  1.Основные фигуры планиметрии.
2.Аксиомы планиметрии.
3.Смежные углы.
4.Вертикальные углы.
5.Перпендикулярные прямые.
6.Признаки равенства треугольников.
  1.Движение и его свойства.
2.Симметрия относительно точки.
3.Симметрия относительно прямой.
4.Параллельный перенос и его свойства.
 
         
  Страница 2   Страница 6  
  1.Параллельность прямых.
2.Признаки параллельности прямых.
3.Свойство углов при пересечении параллельных прямых.
4.Сумма углов треугольника.
5.Единственность перпендикуляра к прямой.
  1.Вектор и его абсолютная величина.
2.Сложение векторов.
3.Умножение вектора на число.
4.Разложение вектора по двум неколлинеарным векторам.
5.Скалярное произведение векторов.
 
         
  Страница 3   Страница 7  
  1.Окружность описанная около треугольника.
2.Окружность вписанная в треугольник.
3.Геометрическое место точек.
  1.Преобразование подобия и его свойства.
2.Подобие фигур. Подобие треугольников по двум углам.
3.Подобие треугольников по двум пропорциональным сторонам и углу между ними.
4.Подобие треугольников по трем пропорциональным сторонам.
5.Подобие прямоугольных треугольников.
 
         
  Страница 4   Страница 8  
  1.Параллелограмм.
2.Свойства диагоналей параллелограмма.
3.Ромб.
4.Теорема Фалеса.
5.Средняя линия треугольника.
6.Трапеция.
7.Теорема о пропорциональных отрезках.
  1.Углы, вписанные в окружность.
2.Пропорциональность хорд и секущих окружности.
3.Теорема косинусов.
4.Теорема синусов.
5.Соотношение между углами и сторонами в треугольнике.
 
         
         
line
         
  Найти репетитора  
         
         
line
    Комментарий:  
         
  Регистрация  
   Для написания комментария необходимо зарегистрироваться!    
         
        Забыли пароль?
      Email:
      Пароль:
       
         
         
         
line
 
line line
Math Task - сайт репетиторов Яндекс.Метрика Рейтинг@Mail.ru