Стереометрия. Страница 2
Math Task сайт репетиторов

Стереометрия. Страница 2

 
  line    
line
 
         
  Главная > Учебные материалы > Математика:  Стереометрия. Страница 2  
  line  
 
  • Репетитор по математике - Васильев Алексей Александрович Math Task Репетитор: Васильев Алексей Александрович

    Math Task Предметы: математика, физика, информатика, экономика.

           Стоимость: 2000 руб / 90 мин.
  • Репетитор по математике - Крюков Илья Хассанович Math Task Репетитор: Крюков Илья Хассанович

    Math Task Предметы: математика, экономика, бухгалтерский учет.

           Стоимость: 1600 руб / 60 мин.
  • Репетитор по математике - Скрипаленко Михаил Михайлович Math Task Репетитор: Скрипаленко Михаил Михайлович

    Math Task Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по русскому языку - Матвеева Милада Андреевна Math Task Репетитор: Матвеева Милада Андреевна

    Math Task Предметы: русский язык, литература (ЕГЭ, ГИА).

           Стоимость: 1200 руб / 60 мин.
  • Репетитор по физике - Тверской Василий Борисович Math Task Репетитор: Тверской Василий Борисович

    Math Task Предметы: математика, физика.

           Стоимость: 3500 руб / 90 мин.
  • Репетитор по английскому языку - Поздняков Андрей Александрович Math Task Репетитор: Поздняков Андрей Александрович

    Math Task Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

           Стоимость: 2000 руб / 60 мин.
  • Репетитор по бухучету - Ершикова Марина Львовна Math Task Репетитор: Ершикова Марина Львовна

    Math Task Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

           Стоимость: 1500 руб / 60 мин.
 
 
1.Параллельность прямых в пространстве.
2.Признак параллельности прямых.
3.Признак параллельности плоскостей.
4.Свойства параллельных плоскостей.
5.Примеры.

 

   
1 2 3 4 5 6 7 8
         
line
         

1. Параллельность прямых в пространстве

   Теорема. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

   Доказательство. Пусть b данная прямая и точка А, не лежащая на данной прямой. Проведем через точку А и прямую b плоскость α. А через точку А прямую a, параллельную прямой b. (Рис.1)

   Допустим, что существует другая прямая а', параллельная прямой b и проходящая через точку А. Тогда через них можно провести плоскость β. Отсюда следует, что через точку А и прямую b можно провести две плоскости. А это невозможно согласно теореме о единственности существования плоскости, проведеной через прямую и не лежащую на ней точку. Таким образом, плоскости α и β совпадают. А следовательно, согласно аксиоме, прямые а и a' совпадают также.

  Параллельность прямых в пространстве

Рис. 1 Параллельность прямых в пространстве.

 
         

2.Признак параллельности прямых

   Теорема. Две прямые, параллельные третьей прямой, параллельны.

 
 

   Доказательство. Пусть прямые а и b лежат в разных плоскостях и параллельны прямой с. Доказать, что прямые а и b параллельны между собой. (Рис.2)

    Проведем через прямую a и c плоскость α. Через прямые b и c плоскость β. Прямая с - прямая пересечения плоскостей α и β. Отметим на прямой а точку А. Проведем через точку А и прямую b плоскость γ. Тогда плоскость γ будет пересекать плоскость α по прямой а'. Прямая a' либо паралельна прямой c, либо ее пересекает. Допустим прямая а' пересекает прямую с. Тогда эта точка пересечения принадлежит плоскости β, т.к. прямая с принадлежит двум плоскостям α и β. А т.к. прямая а' полностью принадлежит плоскости γ, а прямая b есть прямая пересечения плоскостей γ и β, то это означает, что она пересекает и прямую b. А это означает, что прямые b и c пересекаются, т.к. прямая a' пересекает плоскость β только в одной точке, которая должна принадлежать двум прямым b и с. А это противоречит условию. Следовательно прямая a' не пересекает прямую с. Она ей параллельна. Согласно аксиоме, на плоскости α, через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. И эта прямая а. Т.е. прямые а и а' совпадают. Это значит, что прямые а и b параллельны.

 

 

Признак параллельности прямых

Рис.2 Признак параллельности прямых

 
         

3. Признак параллельности плоскостей

   Теорема: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

 
 

Доказательство.

   Пусть α и β данные плоскости. Прямая а параллельна прямой а1. Прямая b параллельна b1 (Рис.3). Допустим, что плоскости α и β пересекаются по прямой с. Тогда прямая с должна пересекать, как минимум, одну из прямых на каждой плоскости. Пусть это будут прямые а и а1. Т.к. прямые а и а1 параллельны, следовательно они пересекают прямую с в разных точках Е и Е1. Проведем через две параллельные прямые а и а1 плоскость γ. Тогда точки Е и Е1, которые лежат на прямой с, будут принадлежать плоскости γ. Следовательно, прямая с полностью принадлежит плоскости γ. Отсюда следует, что:

а ∈ α, γ.
а1 ∈ β, γ.
с ∈ α, β,γ 

т.е. плоскости α и γ пересекаются по двум прямым а и с, а плоскости β и γ пересекаются по прямым а1 и с.

 

Признак параллельности плоскостей

Рис. 3 Признак параллельности плоскостей.

 
 

   Согласно аксиоме стереометрии, это невозможно, т.к. две плоскости могут пересекаться только по одной прямой. И следовательно, наше предположение неверно. Плоскости α и β не пересекаются, они параллельны.

 
         
         

4. Свойства параллельных плоскостей

   Теорема: Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

Доказательство.

 
 

   Пусть даны две параллельные плоскости α и β (Рис.4). Плоскость γ пересекает их по прямым а и b.

   Допустим, что прямые пересечения плоскостей пересекаются. Это прямые а и b'. Прямая а - это множество точек, принадлежащих плоскостям α и γ. А так как прямая b' представляет собой множество точек, пренадлежащих двум плоскостям β и γ, то отсюда следует, что существует точка пересечения прямых а и b', которая принадлежит плоскости α. И следовательно, плоскости α и β имеют общую точку. А это противоречит условию, т.к. плоскости α и β не пересекаются, они параллельны. Следовательно, прямые а и b лежат в одной плоскости и не пересекаются. Т.е. они тоже параллельны.

 

 

Свойства параллельных плоскостей.

Рис. 4 Свойства параллельных плоскостей.

 
         
line
         

5. Пример 1

 

   Докажите, что если прямые АВ и CD скрещивающиеся, то прямые АС и BD тоже скрещиваются.

 
         
 

   Доказательство:

   Пусть даны две скрещивающиеся прямые АВ и CD. Проведем через прямую АВ и точку С плоскость α (Рис.5). Так как прямые АВ и CD скрещивающиеся, то прямая CD не лежит в плоскости α, а пересекает ее в одной точке С.

   Отсюда следует, что точка D не принадлежит плоскости α. Она лежит вне ее.

   Таким образом, если мы проведем прямую АС, то она полностью будет принадлежать плоскости α, так как две ее точки А и С принадлежат плоскости α.

   А прямая BD не будет принадлежать плоскости α, так как точка D не принадлежит плоскости α. Прямая BD будет пересекать плоскость α в одной точке В.

   Отсюда можно сделать вывод, что прямая АС не может пересекать прямую BD, так как прямая АС полностью принадлежит плоскости α. А прямая BD имеет только одну общую точку с плоскостью α, точку В. Но так как точка В не лежит на прямой АС, следовательно, прямые АС и BD не пересекаются. Они являются скрещивающимися.

 

Задача. Докажите, что если прямые АВ и CD скрещивающиеся...

Рис.5 Задача. Докажите, что если прямые АВ и CD скрещивающиеся...

 
         
         
 

Пример 2

 

   Точки А, В, С, D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD.

 
         
 

   Доказательство:

   Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем плоскость α через точки A, D, C и плосксоть α' через точки А, В, С (Рис.6). Точки P, S, F, E являются серединами отрезков AB, BC, AD и CD соответственно. Необходимо доказать, что прямая PS параллельна прямой FE.

   Рассмотрим треугольник АВС. Он полностью лежит в плоскости α', так как три его вершины лежат в данной плоскости по построению. Отрезок PS представляет собой среднюю линию треугольника, которая параллельна АС.

   Теперь рассмотрим треугольник АСD. Он полностью лежит в плоскости α, так как три его вершины лежат в данной плоскости по построению. Отрезок FE представляет собой среднюю линию треугольника, которая также параллельна АС.

   Отсюда можно сделать вывод: если две прямые PS и FE параллельны третьей прямой АС, то они параллельны и между собой. И равны половине основанию АС. Таким образом, PSEF представляет собой параллелограмм.

 

Задача. Точки А, В, С, D не лежат в одной плоскости...

Рис.6 Задача. Точки А, В, С, D не лежат в одной плоскости...

 
         
         
 

Пример 3

 

   Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и ВС, АС и BD, AD и BC пересекаются в одной точке.

 
         
 

   Доказательство:

   Пусть даны четыре точки А, В, С, D, которые не лежат в одной плоскости. Проведем отрезки EP, VS, FT, которые соединят середины сторон AB и CD, BC и AD, AC и BD соответственно (Рис.7).

   Из предыдущей задачи нам известно, что четырехугольник EVPS, вершины которого являются серединами отрезков АВ, ВС, СD и AD, есть параллелограмм, у которого EP и VS диагонали. Эти диагонали пересекаются в точке О и делятся этой точкой пополам.

   Теперь рассмотрим четырехугольник VTSF. Данный четырехугольник также является параллелограммом, так как его вершины - это середины отрезков BC, BD, AC и AD. А его диагонали VS и FT пересекаются в точке О и делятся этой точкой пополам.

   Так как у отрезка VS середина одна, т.е. точка О, то все три диагонали EP, VS и FT пересекаются в этой точке.

 

Задача. Даны четыре точки А, В, С, D, не лежащие в одной плоскости...

Рис.7 Задача. Даны четыре точки А, В, С, D, не лежащие в одной плоскости...

 
         
         
 

Пример 4

 

   Докажите, что если две плоскости, пересекающиеся по прямой а, пересекают плоскость α по параллельным прямым, то прямая а параллельна плоскости α.

 
         
 

   Доказательство:

   Пусть даны две плоскости β и γ, пересекающиеся по прямой а (Рис.8). Эти плоскости пересекают плоскость α по параллельным прямым b и с. Необходимо доказать, что прямая а параллельна плоскости α.

   Прямая b - это множество точек, которые одновременно принадлежат плоскостям α и γ. Прямая с - это множество точек, которые одновременно принадлежат плоскостям α и β. Так как прямые b и с параллельны, то на этих прямых нет ни одной точки, которая одновременно принадлежала бы трем плоскостям.

   Прямая а - это множество точек, которые принадлежат двум плоскостям β и γ. Допустим, что она пересекает плоскость α. Тогда на ней должна быть точка, которая принадлежала бы одновременно трем плоскостям. А следовательно, она одновременно лежала бы на прямых b и с. Но это противоречит условию задачи, так как прямые b и с не пересекаются. Следовательно, прямая а параллельна прямым b и с. А отсюда следует, что она параллельна плоскости α.

 

Задача. Докажите, что если две плоскости, пересекающиеся по прямой а...

Рис.8 Задача. Докажите, что если две плоскости, пересекающиеся по прямой а...

 
         
         
 

Пример 5

 

   Докажите, что если четыре прямые, проходящие через точку О, пересекают плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через точку О, тоже в вершинах параллелограмма.

 
         
 

   Доказательство:

   Пусть даны четыре прямые, проходящие через точку О, ОА, ОВ, ОС и OD (Рис.9). Они пересекают плоскость α в точках А, В, С и D соответственно. Проведем плоскость α', параллельную плоскости α. Тогда прямые ОА, ОВ, ОС и OD пересекут плоскость α' в точках A'B'C'D'.

   Проведем плоскость β через точки А, В, A', B'. Тогда прямые АВ и A'B' не пересекаются, так как это прямые пересечения двух параллельных плоскостей α и α' с секущей плоскостью β.

   Отсюда следует, что прямые ВС и В'С', CD и C'D', AD и A'D' параллельны. А так как АВ параллельна CD, а ВС параллельна AD, то следовательно, А'В' параллельна C'D', а В'С' параллельна A'D'.

   Таким образом, A'B'C'D' также является параллелограммом.

 

Задача. Докажите, что если четыре прямые, проходящие через точку А...

Рис.9 Задача. Докажите, что если четыре прямые, проходящие через точку А...

 
         
         
line
         
1 2 3 4 5 6 7 8
         
         
 

Содержание

     
         
  Страница 1   Страница 5  
  1.Основные фигуры стереометрии.
2.Группа дополнительных аксиом стереометрии.
3.Плоскость, проходящая через данную прямую и точку.
4.Пересечение прямой с плоскостью.
5.Существование плоскости, проходящей через три данные точки.
  1.Двухгранный, трехгранный углы.
2.Призма и построение ее сечений.
3.Параллелепипед.
4.Прямоугольный параллелепипед.
5.Пирамида.
6.Усеченная пирамида.
7.Правильные многогранники.
 
         
  Страница 2   Страница 6  
  1.Параллельность прямых в пространстве.
2.Признак параллельности прямых.
3.Признак параллельности плоскостей.
4.Свойства параллельных плоскостей.
  1.Цилиндр.
2.Конус.
3.Вписанная и описанная призма.
4.Вписанная и описанная пирамида.
5.Шар.
6.Симметрия шара.
 
         
  Страница 3   Страница 7  
  1.Перпендикулярность прямых в пространстве.
2.Признак перпендикулярности прямой и плоскости.
3.Теорема о трех перпендикулярах.
4.Признак перпендикулярности плоскостей.
5.Расстояние между скрещивающимися прямыми.
  1.Объем. Объем прямоугольного параллелепипеда.
2.Наклонный параллелепипед.
3.Объем пирамиды.
4.Объем призмы.
5.Равновеликие тела.
6.Объемы подобных тел.
 
         
  Страница 4   Страница 8  
  1.Декартовы координаты в пространстве.
2.Расстояние между двумя точками.
3.Преобразование симметрии в пространстве.
4.Движение в пространстве.
5.Угол между прямой и плоскостью.
6.Угол между плоскостями.
7.Векторы в пространстве.
8.Площадь ортогональной проекции многоугольника.
  1.Площадь боковой поверхности цилиндра.
2.Объем цилиндра.
3.Площадь боковой поверхности конуса.
4.Объем конуса.
5.Объем тел вращения.
6.Объем шара.
7.Объем шарового сегмента и сектора.
8.Площадь сферы.
 
         
         
line
    Комментарий:  
         
  Регистрация  
   Для написания комментария необходимо зарегистрироваться!    
         
        Забыли пароль?
      Email:
      Пароль:
       
         
         
         
line
 
line line
Math Task - сайт репетиторов Яндекс.Метрика Рейтинг@Mail.ru